If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-50x^2+1500x+140000=0
a = -50; b = 1500; c = +140000;
Δ = b2-4ac
Δ = 15002-4·(-50)·140000
Δ = 30250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{30250000}=5500$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1500)-5500}{2*-50}=\frac{-7000}{-100} =+70 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1500)+5500}{2*-50}=\frac{4000}{-100} =-40 $
| x+18/7=4/7 | | x+1/7=0 | | 2x+(-2x)+8=56 | | 3^(2x-2)=81 | | 4x-2/2=-5 | | x-4/9=2/3 | | 1/2x-7=-4;6 | | w^2+10w+1=0 | | 4h+4=2h-6 | | x-13/6=3/2 | | 3/4x+1=-8-12 | | x+13/6=3/2 | | x+8/5=0 | | 5w+34=24(w+5) | | 5(y+7)(y–9)=0 | | x-11/3=4/3 | | x-8/3=4/3 | | X+x+8+2x=56 | | 60e-6=-40(e-10)-7 | | F(x)=x4-6x2 | | 4s+10=42 | | x-11/3=3/4 | | 2√11x/25-√11x/49=0 | | F(x)=x4+-6x2 | | x-5/7=-7 | | 5(4+r)=50(40+10r) | | x+x/3=20 | | x+11/7=11/7 | | 2✓11x/25-✓11x/49=0 | | 5d-2=18 | | x+3/4=-13/4 | | 3w+6(w–4)=156 |